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RESUMO 

Fazendo o uso dos conceitos e aplicabilidade da modelagem computacional de 

dinâmica de fluidos e, fundamentando as análises e premissas nas três leis básicas 

da mecânica dos fluidos: conservação de massa, primeira lei da termodinâmica e 

segunda lei de Newton, o presente estudo demonstra uma metodologia que 

determina hipóteses em relação ao crescimento energético de perturbações em um 

escoamento interno de um ejetor. Tal metodologia é baseada comparação entre o 

campo base do ejetor e o campo base de um escoamento bidimensional com 

expansão geométrica do tipo degrau, o qual é utilizado como base do estudo de 

avaliação e análise das variações transitórias de medidas como velocidade do 

escoamento, a partir da introdução de perturbações senoidais de pulso rápido na 

condição de contorno da entrada.  

Palavras-chave: Ejetor, Crescimento energético, Escoamento.  

 



 

 

ABSTRACT 

Using the concepts and applicability of computational fluid dynamics modeling, and 

taking as a basis the three fundamental laws of fluid mechanics: conservation of 

mass, the first thermodynamic law, and Newton's second law, this study 

demonstrates a methodology for hypothesizing the energetic growth of disturbances 

in an internal flow of an ejector. This methodology is based on a comparison between 

the base field of the ejector and the base field of a two-dimensional flow with 

geometric expansion of the step type, which serves as a basis for studying the 

evaluation and analysis of transient variations in measured values such as flow 

velocity resulting from the introduction of fast pulse sinusoidal perturbations in the 

input boundary condition. 

Keywords: Ejector, Energy Gain, Flow. 
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1 INTRODUÇÃO 

Baseada no comportamento de fluidos em diversos tipos de sistemas, a modelagem 

computacional da dinâmica de fluidos possui grande importância em setores industriais. 

Assim como afirmado por VAN LEER; POWELL (2010), há uma demanda por métodos 

de medição e maneiras de estabelecer, previamente às aplicações, uma confiabilidade 

de soluções e metodologias computacionais para as modelagens, principalmente para 

escoamentos com geometria complexa, como por exemplo um ejetor.  

Os ejetores (Figura 1), equipamentos para fluxo de fluidos com geometria de 

expansão, possuem diversas áreas de aplicação devido a possível implementação para 

mecanismos como sucção e mistura de fluidos, como em reatores químicos, dosadores, 

entre outros.  

Figura 1 - Esquema de componentes e geometria de um ejetor 

 
Fonte: Adaptado de EVANS (c2021) 

De acordo com HUSAIN et al. (2016), o funcionamento dos ejetores se baseia no 

princípio do efeito de Venturi, sendo que com injeção de um fluido primário tem-se como 

consequência um jato de alta velocidade fazendo com que uma zona de sucção seja 

criada, formando um gradiente de pressão no bocal de sucção, e com isso, a sucção de 

um fluido secundário. Posteriormente, na câmara de mistura ocorre a mistura dos dois 

fluidos, havendo transferência de energia e momento, e assim esta mistura segue para o 

difusor, local onde ocorre expansão do fluxo.  
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No entanto, embora possua uma ampla aplicabilidade em diversos segmentos da 

indústria, a modelagem matemática do escoamento interno do ejetor não é considerada 

trivial, necessitando a definição das equações de conservação de massa, energia e 

momento, o uso de equações de estado, além da definição de algumas premissas e 

hipóteses devidamente implementadas à simulação. Além disso, bem como comentado 

em HUSAIN et al. (2016), os ejetores não são equipamentos com altas performances de 

eficiência, possuindo valores entre 26% e 33%. A limitação no desempenho dos ejetores 

pode ocorrer por diversos motivos, como por exemplo a mistura inadequada de fluidos 

primários e secundários e também, devido fenômenos de transferência de energia e 

quantidade de movimento.  

Portanto, com a intenção de contribuir no desenvolvimento de análises e 

modelagem dos ejetores, no atual estudo será evidenciada uma metodologia baseada 

na comparação entre o escoamento base do ejetor e o escoamento base de um 

escoamento bidimensional com expansão geométrica do tipo degrau, o qual permite 

uma validação da metodologia de modelagem e análise, além de auxiliar no 

desenvolvimento de hipóteses acerca do crescimento energético das perturbações que 

ocorre nos ejetores.  

1.1 Objetivo 

Considerando o escoamento interno laminar de um fluido incompressível com 

geometria de bombeamento, do tipo ejetor, o atual estudo objetiva estimar 

características energéticas de perturbações do fluxo interno deste escoamento. Com a 

determinação das perturbações ótimas que evoluem durante o fluxo de um escoamento 

de expansão do tipo degrau, provocando a alteração do regime do escoamento e 

gerando o maior crescimento energético transiente; e posteriormente, utilizando o 

espelhamento simétrico em torno do eixo horizontal do domínio espacial deste 

escoamento; será expressa uma possível correlação entre estes escoamentos – o do 

degrau e do ejetor – em busca de estimar e elaborar hipóteses a respeito do mecanismo 

de evolução energética de perturbações do fluxo interno dos ejetores.  
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1.2 Justificativa 

Caracterizados por geralmente não desempenhar grandes eficiências em seu 

funcionamento, os ejetores são objetos de estudo devido a grande diferença de 

momento entre os fluxos de fluido primário e secundário, o que faz com que haja uma 

perda de energia cinética inevitável no interior do ejetor (PARK; LIM; YOON, 2008). 

Portanto, ao estudar e evidenciar o mecanismo e características de escoamento de 

ejetores que tornam possível o maior crescimento energético transiente gerado por uma 

combinação ótima perturbações introduzidas na condição de contorno, é obtida uma 

hipótese acerca de uma modelagem de ejetores que possua uma mistura mais efetiva 

dos fluidos introduzidos.   
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2 REVISÃO BIBLIOGRÁFICA 

2.1 Ejetores 

As bombas à jato, ou ejetores, possuem diversas utilidades no setor industrial, no 

entanto, ARBEL et al. (2003) comentam que o princípio de funcionamento dos ejetores é 

geralmente o mesmo: o fluido primário injetado em alta pressão torna possível a sucção 

de um fluido secundário devido um gradiente de pressão no bocal de sucção; com isso, 

o fluido primário transfere parte de sua energia cinética ao fluido secundário, havendo a 

mistura dos fluidos; e, por fim, a mistura é ejetada após uma passar pela parte do 

difusor.  

Mais especificamente, na indústria de petróleo e gás, diversos estudos e aplicações 

de ejetores, ou bombas a jato, são realizados. Assim como explicado por SAMAD; 

NIZAMUDDIN (2013), os ejetores são utilizados para elevação artificial, quando a 

profundidade e o desvio dos poços de produção aumentam e há depleção da pressão. 

Em CHAGAS et al. (2016) é estudado o seu uso visando a descompressão do 

revestimento em poços maduros; já em DUARTE et al. (2018), o estudo sobre ejetor se 

deu com foco na aspiração de gases aprisionados no tubo anular, visando a 

manutenção da vazão do poço em questão. 

2.2 Regimes de Escoamento 

Um experimento realizado em 1883 por Osborne Reynolds analisava o 

comportamento da listra de um corante introduzido em um escoamento de um fluido 

transparente, tendo como variável a vazão deste fluido base, e assim, foi observado que 

em maiores valores de vazão, maior a mistura do corante nesse fluido (Figura 2). Com 

isso, foi definida a categorização do regime de escoamentos, os quais podem ser do tipo 

laminar quando não há mistura significativa entre partículas vizinhas do fluido durante o 

escoamento; turbulento, o qual ocorre quando os movimentos do fluido variam 

irregularmente e o corante em questão perde sua identidade devido a difusão; e, o 

regime de escoamento em transição, marcado pela transição do escoamento de laminar 

para turbulento (POTTER; WIGGERT; RAMADAN, 2015).  
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Figura 2 - Demonstração do perfil de escoamento do corante no experimento de Reynolds. 

 

Fonte: SILVA et al. (2017) 

Reynolds definiu um parâmetro adimensional (Equação 1) que pode ser utilizado 

como ferramenta para prever o regime do escoamento, consolidado pela combinação de 

três parâmetros físicos: espessura da camada limite (𝐿), velocidade de escala (𝑉) e a 

viscosidade cinemática (𝜐). Sendo que, para cada tipo de geometria de escoamento 

tem-se um número de Reynolds crítico, o qual determina que se 𝑅𝑒 < 𝑅𝑒𝑐𝑟𝑖𝑡𝑖𝑐𝑜 , o 

escoamento permanece laminar. 

𝑅𝑒 =
𝑉𝐿

𝜐
  Equação 1 

Normalmente a transição para a turbulência se inicia com uma instabilidade do 

estado laminar, podendo ser provocada por perturbações. Caso essas oscilações sejam 

crescentes, podem ser seguidas por uma alteração do regime para a turbulência ou, 

podem ser um gatilho para o início da transição do regime rumo à turbulência 

(KRISHNAN; DESHPANDE; KUMAR, 2010). 

2.3 Estabilidade de Escoamentos 

Assim como comentado em BARKLEY; BLACKBURN; SHERWIN (2007), dois 

questionamentos devem ser realizados sobre as perturbações em escoamentos: há a 

possibilidade do crescimento ocorrer infinitamente? E, dado um fluxo base linearmente 

estável, existem soluções para a equação que governa o escoamento com perturbações 
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– modelada a partir da linearização das equações de Navier- Stokes – que exibem 

grande crescimento transiente antes de decaírem?  

Tem-se que em um escoamento estável geralmente as oscilações continuam 

sempre com a mesma amplitude e, normalmente, decaem com um tempo por serem 

amortecidas por efeitos viscosos (KRISHNAN; DESHPANDE; KUMAR, 2010), assim 

como apresentado na Figura 3.  

Figura 3 - Demonstração da evolução de perturbações em um escoamento linearmente estável. 

 

Fonte: KRISHNAN; DESHPANDE; KUMAR (2010) 

Já quando as oscilações aumentam em amplitude perante o domínio do 

escoamento, seja o temporal, espacial ou ambos, o fluxo apresenta uma instabilidade 

(Figura 4). Tem-se que quando uma perturbação cresce apenas no domínio temporal, 

permanecendo fixa em relação ao espacial, a instabilidade é absoluta; caso a 

perturbação aumenta em magnitude perante o escoamento, se propagando à medida 

que cresce podendo decair a qualquer ponto do domínio, tem-se uma instabilidade 

convectiva (BLACKBURN; BARKLEY; SHERWIN, 2008). 

Figura 4 - Demonstração da evolução de perturbações em escoamentos com instabilidade absoluta (a), 
instabilidade convectiva (b) e, escoamentos com geometria complexa onde há regiões de instabilidade 

convectiva local cercada por região de fluxo estável (c).   

 

Fonte: Adaptado de BLACKBURN; BARKLEY; SHERWIN (2008) 
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Portanto, esse segundo questionamento acerca de perturbações que geram 

grande crescimento transiente antes de decrescerem é o que baseia o atual estudo. 

Levando em consideração que BARKLEY; BLACKBURN; SHERWIN (2007) também 

afirmam que caso a resposta for afirmativa, o fluxo é linearmente estável com a 

possibilidade de ter instabilidade convectiva, linear ou ambas.  

2.4 Equações Governantes do Escoamento  

Na área de mecânica dos fluidos, algumas quantidades de principal interesse de 

estudo são definidas por três leis básicas: conservação de massa, a segunda lei de 

Newton e a primeira lei de termodinâmica (POTTER; WIGGERT; RAMADAN, 2015). 

Assim como em ANDERSON (1992), o desenvolvimento das equações 

governantes do escoamento base será estudado com o seguinte conceito de três fases: 

descrever um princípio físico; aplicá-lo em um modelo apropriado; obter uma equação 

que represente este princípio físico. 

Com o estudo do modelo de movimento do fluido partindo da definição da massa 

infinitesimal com base na massa específica (𝜌) e volume de controle 𝒱 (Equação 2) e, 

tendo como como princípio de que a massa é conservada, tem-se que a derivada da 

massa do fluido é nula (Equação 3). Com isso, é possível combinar essas duas 

equações chegando na Equação 4, a qual representa a equação diferencial da 

continuidade do fluido, sendo 𝑼⃑⃑  o vetor velocidade (ANDERSON, 1992):  

𝜕𝑚 = 𝜌𝜕𝒱 
Equação 2 

𝐷(𝜕𝑚)

𝐷𝑡
= 0 Equação 3 

𝐷𝜌

𝐷𝑡
+ 𝜌∇. 𝑼⃑⃑ = 0 Equação 4 

Adicionando a hipótese de que neste estudo será feita a modelagem do 

escoamento de um fluido incompressível, ou seja, a massa específica de cada partícula 

do fluido é constante (Equação 5), a equação da continuidade demostra que neste caso, 

o divergente do vetor velocidade é zero (POTTER; WIGGERT; RAMADAN, 2015): 
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𝐷𝜌

𝐷𝑡
= 0 

Equação 5 

∇. 𝑼⃑⃑ = 0 Equação 6 

Também definindo o fluido em estudo como newtoniano, que possui uma relação 

de proporcionalidade entre a taxa de cisalhamento e o produto da taxa de deformação 

com a constante de viscosidade; isotrópico, cujas propriedades uma determinada 

posição independem da direção; e, homogêneo, tendo suas propriedades independentes 

da posição. É aplicada a segunda lei de Newton para tal fluido, é possível obter as 

equações diferenciais que descrevem o movimento deste fluido, conhecidas como 

equações de Navier-Stokes (MUNSON et al., 2009): 

𝜌
𝐷𝑼

𝐷𝑡
=  − ∇𝑝 − 𝜌(𝑼 ∙ ∇)𝑼 + 𝜇∇2𝑼 + 𝜌𝑔 

Equação 7 

Sendo que 𝑝  representa a pressão estática; 𝑔  a gravidade; e, 𝜇  a viscosidade 

dinâmica do fluido.  

2.5 Estabilidade Linear e Crescimento Energético Transiente 

É necessário compreender as ocasiões em que o escoamento base é linearmente 

estável, mas, com a presença de regiões de instabilidade convectiva local, as 

perturbações apresentam um desenvolvimento transiente (BARKLEY; BLACKBURN; 

SHERWIN, 2007). Portanto, definindo as perturbações como pulsos rápidos de formas 

senoidais e sendo elas ortogonais entre si, as perturbações serão incompressíveis assim 

como o escoamento base.  

Utilizando o conceito físico de energia cinética (Equação 8a) e considerando a 

evolução transiente das perturbações no domínio espacial Ω, é determinada uma norma 

𝕃2 da energia cinética total, pela unidade mássica da perturbação (𝐸), associada a um 

produto interno (Equação 8b), afim de quantificar o tamanho das perturbações 

(ABDESSEMED et al., 2009).  
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𝐾 =
𝑚∙ 𝑣2

2
  

Equação 8a 

2𝐸(𝑼′) =  (𝑼′, 𝑼′) ≡  ∫𝑼′ ∙ 𝑼′𝑑𝒱
Ω

 
Equação 8b 

Sendo 𝑼′  a evolução infinitesimal das perturbações e 𝒜(𝑡)  um operador de 

evolução linear que desenvolve as perturbações no espaço temporal (Equação 9) 

definido pelas equações de Navier-Stokes (Equação 7), teremos os resultados sobre a 

estabilidade linear do escoamento base (ABDESSEMED et al., 2009) em relação aos 

domínios espaciais e temporais do escoamento. 

𝑼′(𝑥, 𝑡) =  𝒜(𝑡)  ∙ 𝑼′(𝑥, 0) 
Equação 9 

Sendo que o crescimento transiente gerado pelas perturbações em um tempo 𝜏  é 

normalizado em relação à energia inicial do escoamento base: 

𝐸(𝜏)

𝐸(0)
= (𝑼′(𝜏), 𝑼′(𝜏)) 

Equação 10 

É possível compreender tal dinâmica de estabilidade e crescimento transiente a 

partir do cálculo dos autovalores e auto vetores singulares de 𝒜. Para isso, é definida a 

perturbação normalizada temporalmente  𝑗 com 𝑼𝒋 evoluído pela condição inicial 𝑼′(𝟎). 

Com isso, estamos em busca dos maiores valores singulares de 𝒜(𝜏) e para isso será 

feita a decomposição de valores singulares de 𝒜(𝜏), sendo 𝑣 os autovetores e 𝜎  os 

autovalores (BARKLEY; BLACKBURN; SHERWIN, 2007). 

𝒜(𝜏)𝑽𝑗  =  𝜎𝑗  𝑼𝒋  Equação 11a 

𝜎𝑗 = ‖𝑼′(𝜏)‖ 
Equação 11b 

2.6 Decomposição de Valores Singulares (SVD) 

Como comentado no item 2.4, a metodologia de resolução empregada será com 

base na decomposição de valores singulares do operador evolutivo de Navier-Stokes 

linearizado (𝒜).  
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Pela definição da Decomposição de Valores Singulares dada em SKILLICORN 

(2007), é possível decompor uma matriz 𝑨 ∈ ℝ𝑛×𝑑 em três matrizes: 𝑨 = 𝑈𝐷𝑉𝑇 (Figura 

5). Sendo assim, temos que as colunas de 𝑼 ∈ ℝn×r e 𝑽 ∈ ℝr×d são ortonormais e a 

matriz 𝑫 ∈ ℝ𝑟×𝑟 é diagonal com valores reais positivos. 

Figura 5 - Esquema da decomposição de valores singulares de uma matriz 𝑨𝑛×𝑑. 

 

Fonte: HOPCROFT; KANNAN (2020) 

 SKILLICORN (2007) explica que 𝑨  possui 𝑟 autovalores positivos 

(𝜎𝑖 , … , 𝜎𝑟) correspondentes aos auto vetores. Sendo a matriz 𝑼, tendo em suas colunas 

os auto vetores direitos (𝑣1, … , 𝑣𝑟) da matriz 𝑨; a matriz 𝑽, sendo suas linhas os auto 

vetores esquerdos (𝑢1, … , 𝑢𝑟) da matriz 𝑨 ; e, define-se 𝑫 uma matriz quadrada 

diagonal de dimensões 𝑟 × 𝑟, onde os elementos de diagonal são chamados de valores 

singulares de 𝑨. Com isso, é possível obter 𝑨 a partir de:  

𝑨 =  ∑𝜎𝑗𝑢𝑗𝑣𝑗
𝑇

𝑟

𝑗=1

 Equação 12a 

𝑢𝑗 =
1

𝜎𝑗(𝑨)
𝑨𝑣𝑗 , 𝑝𝑎𝑟𝑎 𝑗 = 1, 2, … , 𝑟   

Equação 12b 

Portanto, no decorrer do atual estudo, esta metodologia permitirá a reconstrução 

do perfil de velocidades do escoamento. Serão utilizados auto vetores direitos para a 

reconstrução deste perfil e também, serão encontradas as melhores combinações das 

perturbações, sendo estas as que geram maior crescimento energético do escoamento 

e, que são definidas a partir dos auto vetores esquerdos. 
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2.7 Método dos Elementos Finitos 

As equações diferenciais parciais (EDPs) definem um sistema formado pelas 

equações que governam escoamentos de fluidos (Item 2.3), sendo elas a de 

continuidade, Navier-Stokes e a de energia. Em situações nas quais as equações 

necessitam ser linearizadas, é preciso o uso de métodos numéricos para que se 

encontre uma solução aproximada para o sistema (POTTER; WIGGERT; RAMADAN, 

2015).  

Possuindo códigos formados com base em algoritmos numéricos, a dinâmica dos 

fluidos computacional (CFD) é definida por VERSTEEG; MALALASEKERA (2007) como 

sendo a análise de problemas como escoamento de fluidos, transferência de calor e 

outros fenômenos por meio de simulações computacionais. As modelagens no CFD são 

realizadas com base na discretização das equações em uma grade computacional, 

podendo realizar aproximações de diferenças finitas, volumes finitos ou, como será 

aplicado neste estudo, aproximações de elementos finitos (VAN LEER; POWELL, 2010).  

Aplicada para gerar soluções aproximadas de problemas de valores de contorno em 

modelagens até tridimensionais, será utilizado o método de elementos finitos a fim de 

encontrar soluções de Navier-Stokes para o escoamento em estudo. Com a solução que 

abrange o campo de velocidades e pressão (𝒖, 𝑝) do problema, são determinadas 

aproximações iniciais (𝑢ℎ, 𝑝ℎ)  em uma dimensão espacial finita apropriada para a 

discretização das equações que governam o escoamento (MAHMUD; RHAMAN; AZAD, 

2016).  
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3 METODOLOGIA 

Ao realizar a modelagem de um escoamento bidimensional com expansão 

geométrica do tipo degrau (Figura 6) , o atual estudo visa implementar perturbações de 

pulso rápido e caráter turbulento no início do escoamento em questão, a fim de entender 

o mecanismo de amplificação destas perturbações. E, com isso, serão feitas 

comparações à modelagem do escoamento base do ejetor, afim de analisar o 

mecanismo e características de escoamento de ejetores que tornam possível o maior 

crescimento energético transiente gerado por uma combinação ótima perturbações 

introduzidas na condição de contorno, então, é obtida uma hipótese acerca de uma 

modelagem de ejetores que possua uma mistura mais efetiva dos fluidos introduzidos.   

Para isso, utilizando primeiramente um escoamento bidimensional com expansão 

geométrica do tipo degrau (Figura 6), será realizado um estudo da malha computacional 

do escoamento base, assim como de parâmetros do escoamento como vorticidade e 

pontos de separação, em busca de validar a metodologia a partir dos resultados obtidos 

em BLACKBURN; BARKLEY; SHERWIN (2008).  

Nas simulações aplicadas nesse estudo, tanto no caso do degrau como no do ejetor, 

o escoamento base será modelado e suas equações governantes serão com base nas 

equações de Navier-Stokes para fluidos newtonianos, homogêneos e incompressíveis. 

Figura 6 - Exemplo de domínio com geometria de expansão do tipo degrau que será modelado. 

 

Fonte: BARKLEY; BLACKBURN; SHERWIN (2007) 

Com a metodologia verificada, as perturbações, definidas em conformidade ao 

escoamento base, serão inseridas no escoamento do degrau e o enfoque se torna o 

comportamento de evolução destas perturbações e quais seus efeitos no escoamento 

com determinados números de Reynolds. Espera-se que, assim como em BLACKBURN; 
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BARKLEY; SHERWIN (2008), as perturbações gerem instabilidade, com o crescimento 

da energia cinética e a alteração do regime do escoamento.  

A fim de analisar a evolução energética do escoamento, a combinação ótima de 

perturbações será quantificada a partir do cálculo dos auto vetores e autovalores da 

matriz de velocidades obtida pelo parâmetro de evolução de Navier-Stokes linearizado 

na simulação do escoamento com perturbações, assim como em (BARKLEY; 

BLACKBURN; SHERWIN, 2007). Sendo assim, será possível a reestruturação do perfil 

de velocidades do escoamento. 

Para prosseguir o estudo, será realizada a simulação do escoamento a partir da 

combinação de perturbações gerada pelo algoritmo para que seja feita uma análise da 

efetividade das combinações.  

Após este estudo inicial, comprovando e formulando a metodologia, a modelagem 

do ejetor a ser analisado será feita com os mesmos métodos, a partir do espelhamento 

simétrico em torno do eixo horizontal do domínio espacial. Além disso, será proposta 

uma hipótese sobre a dinâmica energética do ejetor a partir da comparação entre o 

escoamento base do ejetor e do degrau, afim de identificar os locais de recirculação e 

mistura no ejetor.  

3.1 Validação de Metodologia – Simulação do Degrau 

3.1.1 Definição do Escoamento Base 

Iniciando a modelagem, é definido um volume de controle inicial com geometria 

do tipo expansão do tipo degrau (Figura 6) e, assim como em BARKLEY; BLACKBURN; 

SHERWIN (2007), são aplicadas as equações de Navier-Stokes (Equação 7) para 

fluidos incompressíveis com as equações governantes do movimento do fluido em um 

domínio Ω, utilizando também a relação do número de Reynolds (Equação 1). Sendo os 

campos de velocidade e pressão do escoamento base definidos respectivamente por 

𝒖(𝑥, 𝑡) = (𝑢, 𝑣, 𝑤)(𝑥, 𝑦, 𝑧, 𝑡) e 𝑝(𝑥, 𝑡): 

𝜕𝒖

𝜕𝑡
=  −(𝒖 ⋅ ∇)𝒖 − ∇𝑝 +

1

𝑅𝑒
∇2𝒖, 𝑒𝑚 Ω Equação 13a 
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∇ ⋅ 𝐮 = 0, em Ω 
Equação 13b 

3.1.2 Definição das Perturbações 

Com o foco em compreender a evolução infinitesimal das perturbações 𝒖′ no 

escoamento base, as equações de Navier-Stokes serão implementadas a partir das 

relações 𝒖 + 𝒖′  e 𝑝 + 𝑝′ , sendo 𝑝′  a pressão das perturbações (BARKLEY; 

BLACKBURN; SHERWIN, 2007):  

𝜕𝒖′

𝜕𝑡
=  −(𝒖 ⋅ ∇)𝒖′ − (𝒖′ ⋅ ∇)𝒖 − ∇𝑝′ +

1

𝑅𝑒
∇2𝒖′, 𝑒𝑚 Ω Equação 14a 

∇ ⋅ 𝐮′ = 0, em Ω 
Equação 14b 

A partir da Equação 14a, tem-se os termos relacionados às respostas da 

propagação das perturbações no escoamento base, sendo: 

𝑢′ ∙ ∇u: redistribuição de energia 

𝑢 ∙ ∇u′: convecção da perturbação 

1

𝑅𝑒
∙ ∇2u′: dissipação de energia 

As perturbações aplicadas nas modelagens deste estudo são pulsos rápidos os 

quais possuem caráter senoidal, definidas por:  

𝑠𝑐𝑎𝑙𝑒 × 𝑠𝑒𝑛 (𝑐𝑜𝑢𝑛𝑡. 𝜋.
𝑦

ℎ
) × (1 − 𝑒𝑥𝑝(−𝜎(𝑡 − 𝜏)2). 𝑐𝑜𝑠 (𝜔𝑡) Equação 15 

Com: 

𝑠𝑐𝑎𝑙𝑒 = 1 

𝜎 = 1; 

𝑡 =  𝑣𝑎𝑟𝑖á𝑣𝑒𝑙 𝑑𝑒 𝑡𝑒𝑚𝑝𝑜 

𝑦 = 𝑎𝑙𝑡𝑢𝑟𝑎 𝑑𝑎 𝑒𝑛𝑡𝑟𝑎𝑑𝑎 

Sendo que a variável 𝑐𝑜𝑢𝑛𝑡 utilizada no intervalo [0;  9]  diferencia as 

perturbações testadas, nomeadas por inlet, alterando os harmônicos e aumentando a 
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frequência de oscilação da função, a fim de encontrar a perturbação de maior impacto, 

ou seja, a qual gera maior energia ao escoamento. 

3.1.3 Definição da Combinação Ótima de Perturbações 

A análise é baseada na interpretação das consequências geradas no escoamento 

com a implementação das perturbações, mais precisamente, será dado um enfoque ao 

maior crescimento energético gerado pelas perturbações em um intervalo de tempo.  

Focando em encontrar a combinação ótima de perturbações, serão realizadas 

simulações de 𝑐𝑜𝑢𝑛𝑡  perturbações por um intervalo de tempo 𝜏 e seus resultados serão 

armazenados em forma matricial (Equação 16). Com isso, cada coluna desta matriz 

representa o resultado de uma perturbação após 𝜏, obtendo a relação a seguir:  

𝑩[⋮][𝑖](𝜏) = 𝒖′(𝜏) 
Equação 16 

Para a resolução dessa matriz será feita com base em fatoração de matrizes 

utilizado a metodologia de Decomposição em Valores Singulares, assim como aplicado 

em BARKLEY; BLACKBURN; SHERWIN (2007), para a resolução de problemas 

matriciais de autovalores. Com isso, a matriz 𝑩 será decomposta em um produto de 

outras três matrizes, chegando em: 

𝑩 = 𝑈𝐷𝑉𝑇 
Equação 17 

Sendo as matrizes: 𝑈, com cada coluna igual ao resultado da velocidade para 

determinada perturbação ótima; 𝐷 , matriz de autovalores que representam nível de 

energia de cada combinação ótima (ordem decrescente); e 𝑉 uma matriz em que as 

linhas representam os coeficientes da combinação linear das perturbações consideradas 

ótimas.  

A combinação ótima das perturbações, a qual gera maior crescimento energético 

no escoamento base, pode ser definida ao encontrar o autovalor máximo de um 

problema matricial auxiliar. 
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3.2 Modelagem do Ejetor por Simetria 

Estudos utilizando métodos bidimensionais ou tridimensionais para a modelagem de 

ejetores, tornam possível uma melhor otimização das dimensões do ejetor, parâmetros 

que influenciam na curva de eficiência do ejetor, assim como apresentado por REIS; 

GIORIA (2021).  

Já pela modelagem do ejetor no presente estudo ser na forma unidimensional, as 

simulações determinam as equações de estado estacionário do escoamento e tornam 

possível a obtenção dos parâmetros de estado do ejetor a partir de modelagens 

matemáticas um pouco menos complexas. Como exemplo, temos o estudo apresentado 

por MARUM et al. (2021), onde uma modelagem quase-unidimensional de um ejetor 

tornou possível a determinação de coeficientes de perda por atrito dos componentes do 

ejetor, além de permitir a previsão do ponto máximo de eficiência. Sendo assim, bem 

como afirmam ARBEL et al. (2003), a modelagem unidimensional de bombas à jato 

ainda são frequentemente utilizadas por apresentarem resultados consistentes e 

razoavelmente precisos.   

3.2.1 Definição do Escoamento Base 

Visando um maior entendimento do escoamento interno base em um ejetor, assim 

como sua dinâmica energética, são definidos os parâmetros do ejetor à ser simulado 

(Tabela 1), tendo como base o esquema do ejetor apresentado na Figura 7.  

Figura 7 - Esquema representativo de um ejetor e seus parâmetros 

 
Fonte: Adaptado de (SAMAD; NIZAMUDDIN, 2013) 
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Tabela 1 - Definição dos parâmetros do ejetor para a simulação 

𝑫𝑷  2.0 Diâmetro entrada do fluido primário  

𝑫𝑩𝑨 0.02 Diâmetro bocal de alimentação  

𝑳𝑩𝑨  3.0 Comprimento da seção de convergência do bocal  

𝑵𝑿𝑷 0.0  Recuo entre a saída do bocal e a entrada da câmara de mistura 

𝑫𝑺  5.0 Diâmetro entrada do fluido secundário  

 𝑳𝑺  4.0 Comprimento da seção de entrada do fluido secundário  

 𝒆𝒔𝒑   0.005 Espessura máxima das pareces do bocal 

 𝑫𝑪𝑴   1.0 Diâmetro da câmara de mistura  

 𝑳𝑪𝑴   10.0 Comprimento da câmara de mistura  

 𝑫𝑫   2.0 Diâmetro do difusor  

𝑳𝑫  40.0 Comprimento do  difusor 

 

São estabelecidas as seguintes hipóteses em relação ao escoamento interno do 

ejetor: a parede interna do ejetor é considerada com aderência perfeita, ou seja, a 

velocidade do fluido é zero nesta condição de contorno; o escoamento interno do ejetor 

é estacionário e isotérmico; o fluido é considerado incompressível e newtoniano; e; 

considera-se uma tensão e pressão nulas na saída do ejetor. Com isso, temos as 

equações que definem o escoamento base do ejetor:  

𝜕𝒖

𝜕𝑡
=  −(𝒖 ⋅ ∇)𝒖 − ∇𝑝 +

1

𝑅𝑒
∇2𝒖, 𝑒𝑚 Ω Equação 18a 

∇ ⋅ 𝐮 = 0, em Ω 
Equação 18b 

Além disso, as condições de contorno foram definidas na modelagem de modo a 

considerar um perfil de velocidades parabólico para ambos os fluidos – primário e 

secundário. 



26 

 

4 RESULTADOS E DISCUSSÕES  

4.1 Validação da Metodologia – Simulação do Degrau 

Objetivando a avaliação da evolução energética do escoamento e suas 

peculiaridades em relação às assimetrias do fluxo, além de buscar a confirmação da 

validação da metodologia, o escoamento com geometria de degrau foi utilizado.  

As simulações foram primeiramente apenas para o escoamento base e 

posteriormente, foi simulado o escoamento com as perturbações aplicadas nas 

condições de entrada do mesmo.  

4.1.1 Análise e Validação do Escoamento Base 

Para a análise do escoamento base, foram realizadas simulações no software 

FreeFEM++ (HECHT, 2012), utilizado para solucionar equações diferenciais parciais. 

Com isso, simulando o mesmo escoamento com diferentes números de Reynolds (100 a 

500) foram obtidos os seguintes perfis de velocidade (Figura 8), sendo que a 

demonstração visual do campo de velocidades foi feita com o uso do software VisIt 

(CHILDS et al., 2012).  

É possível observar uma influência do número de Reynolds no escoamento base 

pois com o aumento de seus valores, maior a região atingida por alterações de 

velocidades, com as zonas de recirculação cada vez mais adiante do escoamento. 
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Figura 8 - Campos de magnitude de velocidade do escoamento base para  
diferentes números de Reynolds. 

 

Com base em POTTER; WIGGERT; RAMADAN (2015), estas zonas de 

recirculação são os locais onde houve a separação da camada limite devido um 

encontro de correntes. Sendo assim, esta região é de grande importância para a atual 

análise pois POTTER; WIGGERT; RAMADAN (2015) ainda afirmam que para um 

número de Reynolds suficiente, a camada limite antes laminar, pode sofrer transição 

para uma camada limite turbulenta logo a diante do ponto de estagnação.  

Figura 9 - Representação das zonas de recirculação e pontos de separação. 

 

Fonte: Adaptado de (BLACKBURN; BARKLEY; SHERWIN, 2008) 

A fim da confirmação da modelagem e metodologia empregadas no estudo até 

então, os valores da vorticidade obtidos em função do domínio espacial do escoamento 

foram utilizados a fim de encontrar os pontos de separação do escoamento, estes que 

determinam o limite da zona de circulação e possuem velocidade nula (Figura 9), para 

assim poder ser feita uma comparação com os resultados obtidos por BLACKBURN; 

BARKLEY; SHERWIN, (2008).  
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A vorticidade (𝜔) descreve as características rotacionais do fluido, definida com 

base no campo vetorial rotacional da velocidade, sendo que quando um determinado 

ponto do domínio possui rotação é nula, tem-se que a velocidade também é nula  

(MUNSON et al., 2009). Com isso, é feita uma relação entre a vorticidade e os pontos de 

separação do escoamento; sendo que os valores da vorticidade da parede superior do 

domínio da malha (𝑣𝑜𝑟𝑡𝑢)  e dos vórtices da parede inferior (𝑣𝑜𝑟𝑡𝑑)  obtidos na 

simulação para cada Reynolds (Figura 10) foram utilizados para encontrar os intervalos 

espaciais que poderiam conter estes pontos de separação.  

Figura 10 - Resultados da distribuição da vorticidade pelo domínio 
 da malha variando o número de Reynolds. 
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Em busca de obter os locais geométricos dos pontos de separação para cada 

número de Reynolds, foram feitas interpolações entre os valores obtidos da vorticidade. 

Com sucessivos cálculos do produto entre os valores de vórtices de pontos consecutivos 

a fim de encontrar os intervalos e os intervalos onde a condição 𝜔(𝑥𝑖). 𝜔(𝑥𝑖+1) < 0 

fosse garantida, uma aproximação linear (Equação 19) utilizando os pontos e os vórtices 

foi realizada para encontrar os valores dos pontos de separação. Sendo 𝑥𝑒  ∈  ℝ ∶  𝑥𝑖 ≤

𝑥𝑒 ≤  𝑥𝑖+1 o local geométrico do ponto de estagnação e 𝜔𝑒 = 0 sua vorticidade:  

𝑥𝑒  = 𝑥𝑖 − (
𝜔𝑖

𝜔𝑖+1   − 𝜔𝑖

) (𝑥𝑖+1 − 𝑥𝑖)  Equação 19 

Encontrando os locais geométricos dos pontos de separação para o vórtice 

superior e inferior, foi desenvolvida a relação estes e os números de Reynolds utilizados 

em cada simulação (Figura 11). 

Figura 11 - Relação entre pontos de estagnação encontrados de acordo com  
o número de Reynolds utilizado na simulação. 

 

Ao comparar a relação obtida no atual estudo (Figura 11Figura 11) com os 

valores explicitados por BLACKBURN; BARKLEY; SHERWIN (2008) na Figura 12, 

temos uma ótima confirmação acerca da assertividade do método empregado. Valida-se 

que com o aumento do Reynolds há a geração de um novo campo de recirculação em 

relação ao vórtice superior, o que está de acordo com a referência bibliográfica, a qual 

afirma que a partir de um 𝑅𝑒 ≅ 275 este novo campo é realmente esperado.  
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Figura 12 - Localização dos pontos de estagnação em função do número de Reynolds 

 
Fonte: BLACKBURN; BARKLEY; SHERWIN (2008) 

4.1.2 Análise da Variação Energética devido Perturbações 

Validando as modelagens e metodologias utilizadas até o momento, o foco das 

análises se torna a avaliação energética do escoamento com a aplicação de 

perturbações de pulsos rápidos de caráter senoidal na condição de contorno da entrada 

do escoamento.  

Com a análise da energia cinética da entrada do escoamento base modelado com 

um período de tempo 𝜏 = 100 (Figura 13), percebe-se a existência de uma primeira 

região que possui picos energéticos logo no início do período (entre 2,25s e 3,5s). Essa 

condição se demonstra constante para todos os números de Reynolds simulados, 

sempre entre o mesmo período temporal e com valores muito próximos. No entanto, 

estes picos não apresentam condições realmente favoráveis para a amplificação das 

perturbações pelo escoamento. 

Sendo assim, a evolução energética com possíveis condições para ativar 

mecanismos de transição do escoamento se apresenta a partir de um 𝑅𝑒 = 300, sendo 

que com o aumento do número de Reynolds, tem-se aumento do pico de energia 

cinética. Julga-se pertinente essa conclusão, principalmente pois como comentado 

anteriormente, verificou-se a formação de mais zonas de recirculação para 𝑅𝑒 ≥ 300, 

característica que torna possível a transição para uma camada limite turbulenta logo a 

diante do ponto de estagnação. 



31 

 

Além disso, observa-se que as perturbações geradas com a variável 𝑐𝑜𝑢𝑛𝑡 

admitindo valores pares tinham maior impacto na energia cinética do escoamento, 

conclusão que auxilia na escolha da combinação ótima de perturbações. 

Figura 13 - Evolução temporal da energia cinética na condição de  
entrada do escoamento para cada número de Reynolds simulado.  

(Na legenda, cada inlet (I) é acompanhado pelo seu respectivo valor para a variável count – Eq.14) 
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4.1.3 Resultados Obtidos pela Combinação de Perturbações  

Ao simular as perturbações juntamente ao escoamento base, temos como saídas 

alguns parâmetros utilizados para a procura da perturbação ótima. Para cada instante 𝑡 

do escoamento, tem-se os resultados de perturbação, indicando os valores obtidos para 

a velocidade, seguindo a equação matricial apresentada na equação 20: 

𝑩[⋮][𝑖](𝜏) = 𝒖′(𝜏) 
Equação 20 

A partir da decomposição SVD, são obtidas as matrizes: 𝑈,𝐷 𝑒 𝑉, tornando possível 

o acesso aos valores de velocidade, nível de energia ordenado de forma crescente e 

coeficientes da combinação linear das perturbações ótimas. Sendo assim, é obtida a 

combinação de perturbações que mais impacta energeticamente escoamento base. 

Utilizando a matriz D e a seguinte relação (equação 21), será obtido o valor ótimo do 

perfil de velocidades do escoamento em relação à altura (y) da entrada do volume de 

controle. Os valores da velocidade são obtidos a partir da seguinte relação: 

𝑉𝑜𝑡𝑖𝑚𝑎 =  ∑ ( 𝐷 [𝑐𝑜𝑢𝑛𝑡]  ×  𝑠𝑒𝑛 (
𝑐𝑜𝑢𝑛𝑡 × 𝜋

𝑐𝑜𝑢𝑛𝑡 ×  𝑦
 ))

9

𝑐𝑜𝑢𝑛𝑡=0
 , 𝑦 𝜀 [0, ℎ] 

Equação 21 

Portanto, foram construídos os perfis de velocidade na condição de entrada do 

escoamento em 3 instantes diferentes: 

Figura 14 - Perfil de Velocidades para Reynolds 100 e instantes (3s, 25s, 62s) 
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Figura 15 - Perfil de Velocidades para Reynolds 200 e instantes (3s, 25s, 62s) 

 

Figura 16 - Perfil de Velocidades para Reynolds 300 e instantes (3s, 25s, 62s) 

 

Figura 17 - Perfil de Velocidades para Reynolds 400 e instantes (3s, 25s, 62s) 

 

Figura 18 - Perfil de Velocidades para Reynolds 500 e instantes (3s, 25s, 62s) 
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Com a construção de perfis de velocidade foi possível reafirmar algumas hipóteses já 

levantadas em relação à evolução energética do escoamento.  

Assim como comentado no item anterior o primeiro período onde foram observados 

picos energéticos, entre os instantes de 2,25s e 3,5s, não possui condições de amplificações 

expressivas das perturbações do escoamento por não possuírem um gradiente de 

velocidade significante. Já para os instantes de 25s e 60s foram observados consideráveis 

gradientes de velocidade, principalmente para os escoamentos simulados com 𝑅𝑒 ≥ 300, o 

que está de acordo com a verificação da formação de zonas de recirculação.  

4.2 Simulação do Campo Base do Ejetor 

Em busca de estabelecer hipóteses sobre as condições do escoamento do ejetor 

que se tornam os potenciais amplificadores de perturbações, a modelagem do 

escoamento base do ejetor tornou possível uma visualização dos campos de velocidade 

para alguns números de Reynolds (Figura 19 a Figura 23), sendo possível observar que 

quanto maior o número de Reynolds utilizado na simulação, maior a região de alta 

velocidade estabelecida no escoamento.  

Figura 19 - Campos de magnitude de velocidade do escoamento base do ejetor (Reynolds = 100) 
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Figura 20 - Campos de magnitude de velocidade do escoamento base do ejetor (Reynolds = 200) 

 

Figura 21 - Campos de magnitude de velocidade do escoamento base do ejetor (Reynolds = 300) 

  

Figura 22 - Campos de magnitude de velocidade do escoamento base do ejetor (Reynolds = 400) 
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Figura 23 - Campos de magnitude de velocidade do escoamento base do ejetor (Reynolds = 500) 

 

Além dos campos de magnitude de velocidade, a partir dos resultados da 

simulação do campo base também foi possível a construção dos campos de magnitude 

da vorticidade do ejetor. Nas figuras 24 e 25 temos a representação da vorticidade para 

as simulações modeladas com número de Reynolds igual a 100 e 500, respectivamente.  

Figura 24 - Campos de magnitude de vorticidade do escoamento base do ejetor (Reynolds = 100) 

  

Figura 25  - Campos de magnitude de vorticidade do escoamento base do ejetor (Reynolds = 500) 
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A partir desses campos observamos que nos dois casos há uma região de 

vortircidade negativa, sendo representada pela região em azul escuro. Sendo que, 

podemos concluir que nos arredores desta região está o ponto de separação do 

escoamento, local que determina o limite da zona de circulação e possuem velocidade e 

vorticidade nula. Além disso, os campos permitem a verificação o estabelecimento de 

uma maior zona com valores de vorticidades elevados, região em vermelho, para a 

simulação modelada com número de Reynolds com valor de 500.  
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5 CONCLUSÕES 

Inicialmente, o estudo estava em busca de validar uma metodologia para a 

modelagem de um escoamento de expansão do tipo degrau, para em um segundo 

momento poder introduzir as perturbações de pulso rápido e forma senoidal na condição 

de entrada do escoamento base afim de verificar os mecanismos de evolução energética 

do mesmo.  

Portanto, durante os estudos em função do escoamento com degrau, foi observado 

que com o aumento do número de Reynolds empregado na simulação, há o 

aparecimento de um novo campo de recirculação em relação ao vórtice superior a partir 

de um número de Reynolds≥ 300 , condição esta que favorece a transição da camada 

limite antes laminar para turbulenta. Além disto, com a análise temporal da evolução 

energética do escoamento após a introdução das perturbações no escoamento base, 

mais uma vez foi observado que utilizando um número de Reynolds maior que 300, tem-

se um expressivo aumento energético do escoamento. Ademais, ao observar os perfis 

de velocidade reconstruídos que possuem maior gradiente de velocidade, e 

consequentemente geram maior redistribuição de energia, foi possível definir as 

hipóteses iniciais em relação à evolução energética do ejetor.  

Tendo conhecimento da dificuldade da modelagem matemática do escoamento 

interno dos ejetores e, em busca de uma contribuição para a resolução da problemática 

em relação à condição de eficiência dos ejetores, estas hipóteses, as quais giram em 

torno do entendimento do mecanismo mais propício para a amplificação de perturbações 

no ejetor, consideram que nas regiões do escoamento onde foram observados 

fenômenos físicos como a formação de bolhas no degrau apresentam um maior 

potencial de amplificação energético.  

Portanto, conclui-se que considerando um enfoque no crescimento transiente ótimo 

da energia do escoamento base do ejetor, a partir do espelhamento simétrico em torno 

do eixo horizontal do domínio espacial do escoamento com expansão do tipo degrau, as 

condições que possivelmente funcionam como potenciais amplificadores das 

perturbações inseridas na condição de entrada do escoamento estão relacionadas à 

uma maior quantidade de zonas de recirculação, além de necessitarem um gradiente de 

velocidade expressivo o bastante para conseguir redistribuir a energia de forma mais 
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efetiva e que faça com que haja condições do estabelecimento de um regime mais 

energético do que o inicial.  

5.1 Contribuições do Trabalho 

Levando em consideração a necessidade de uma maior confiabilidade nos modelos 

de simulação dos ejetores, além de ter como objetivo a colaboração com a comunidade 

científica em relação ao conhecimento sobre o mecanismo energético dos ejetores, o 

presente estudo demonstra um exemplo de caminho a ser seguido em estudos que 

busquem uma validação de simulações em relação à bibliografia. São também 

apresentadas hipóteses acerca da amplificação de perturbações no ejetor, equipamento 

o qual não possui uma modelagem matemática trivial. Além disso, é exposto um 

percurso de avaliação dos ejetores em função do espelhamento do escoamento do tipo 

degrau, o que pode servir de sugestão para estudos que possuem modelagens 

complexas e que possam seguir o caminho de análise por semelhança.  

5.2 Trabalhos Futuros 

Como prosseguimento da avaliação do mecanismo energético dos ejetores, 

entende-se que uma avaliação na mesmo direcionamento da análise feita para o 

escoamento do degrau seja de grande contribuição. Portanto, com a modelagem do 

campo base do ejetor com perturbações inseridas em sua condição inicial, seria possível 

observar a evolução temporal da energia no escoamento, além de permitir verificar as 

hipóteses levantadas no presente estudo. Sendo ainda possível a definição do formato 

de perturbações ótimas para o ejetor, ou seja, aquelas que ocasionam uma 

transitoriedade energética do escoamento, podendo até ser definido um algoritmo para a 

definição das mesmas em função da estrutura geométrica do ejetor em estudo.  

 

 



40 

 

REFERÊNCIAS 

ABDESSEMED, N.; SHARMA, A. S.; SHERWIN, S. J.; THEOFILLS, V. Transient growth 

analysis of the flow past a circular cylinder. Physics of Fluids, [S. l.], v. 21, n. 4, p. 1–14, 

2009. DOI: 10.1063/1.3112738. 

ANDERSON, J. D. Governing Equations of Fluid Dynamics. In: WENDT, John (org.). 

Computational Fluid Dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. 

p. 15–51. DOI: 10.1007/978-3-662-11350-9_2. Disponível em: 

http://link.springer.com/10.1007/978-3-662-11350-9_2. 

ARBEL, A.; SHKLYAR, A.; HERSHGAL, D.; BARAK, M.; SOKOLOV, M. Ejector 

Irreversibility Characteristics. Journal of Fluids Engineering, [S. l.], v. 125, n. 1, p. 121–

129, 2003. DOI: 10.1115/1.1523067. Disponível em: 

https://asmedigitalcollection.asme.org/fluidsengineering/article/125/1/121/463177/Ejector-

Irreversibility-Characteristics. 

BARKLEY, D.; BLACKBURN, H. M.; SHERWIN, S. J. Direct optimal growth analysis for 

timesteppers. International Journal for Numerical Methods in Fluids, [S. l.], v. 57, n. 

9, p. 1435–1458, 2007. DOI: 10.1002/fld.1824. 

BLACKBURN, H. M.; BARKLEY, D.; SHERWIN, S. J. Convective instability and transient 

growth in flow over a backward-facing step. Journal of Fluid Mechanics, [S. l.], v. 603, 

p. 271–304, 2008. DOI: 10.1017/S0022112008001109. 

CHILDS, Hank et al. VisIt: An End-User Tool For Visualizing and Analyzing Very Large 

Data. In: High Performance Visualization--Enabling Extreme-Scale Scientific 

Insight. [s.l: s.n.]. p. 357–372.  

DESHPANDE, Abhijit P.; KRISHNAN, J. Murali; KUMAR, P. B. Suni. Rheology of 

Complex Fluids. New York, NY: Springer New York, 2010. DOI: 10.1007/978-1-4419-

6494-6. Disponível em: http://link.springer.com/10.1007/978-1-4419-6494-6. 

EVANS, Robert. A novel surface jet pump apparatus for the oil-and-gas and process 

industries. Cranfield University, ©️2021. Disponível em: 

<https://www.cranfield.ac.uk/business/develop-your-technology-and-products/license-



41 

 

our-technology/a-novel-surface-jet-pump-apparatus>. Acesso em: 26, novembro, 2021. 

HECHT, F. New development in freefem ++. [S. l.], v. 20, n. 3, p. 251–265, 2012. DOI: 

10.1515/jnum-2012-0013. 

HOPCROFT, John; KANNAN, Ravindran. Foundations of Data Science. [s.l.] : 

Cambridge University Press, 2020. DOI: 10.1017/9781108755528. Disponível em: 

https://www.cambridge.org/core/product/identifier/9781108755528/type/book. 

MAHMUD, K. R.; RHAMAN, M. M.; AZAD, A. K. Al. Numerical Simulation and Analysis of 

Incompressible Newtonian Fluid Flows using FreeFem ++. Journal of Advanced 

Research in Fluid Mechanics and Thermal Sciences, [S. l.], v. 26, n. 1, p. 1–19, 2016.  

MARUM, Victor; REIS, Lívia; MAFFEI, Felipe; RANJBARZADEH, Shahin; 

KORKISCHKO, Ivan; GIORIA, Rafael; MENEGHINI, Julio. Performance analysis of a 

water ejector using Computational Fluid Dynamics (CFD) simulations and mathematical 

modeling. Energy, [S. l.], v. 220, p. 119779, 2021. DOI: 10.1016/j.energy.2021.119779. 

Disponível em: https://doi.org/10.1016/j.energy.2021.119779. 

MUNSON, B. R.; YOUNG, D. F.; OKIISHI, T. H.; HUEBSCH, W. W. Fundamental of 

Fluids Mechanics. Sixth ed. [s.l.] : Don Fowley, 2009. Disponível em: 

http://civilcafe.weebly.com/uploads/2/8/9/8/28985467/fluid_mechanics.pdf. 

PARK, Byung Hoon; LIM, Ji Hwan; YOON, Woongsup. Fluid dynamics in starting and 

terminating transients of zero-secondary flow ejector. International Journal of Heat and 

Fluid Flow, [S. l.], v. 29, n. 1, p. 327–339, 2008. DOI: 

10.1016/j.ijheatfluidflow.2007.06.008. 

POTTER, Merle C.; WIGGERT, David C.; RAMADAN, Bassem H. Mechanics Of Fluids. 

4. ed. [s.l.] : Cengage Learning, 2015. Disponível em: 

https://www.cengage.com.br/ls/mecanica-dos-fluidos-4/. 

REIS, Lívia Bueno; GIORIA, Rafael dos Santos. Optimization of liquid jet ejector 

geometry and its impact on flow fields. Applied Thermal Engineering, [S. l.], v. 194, n. 

January, p. 117132, 2021. DOI: 10.1016/j.applthermaleng.2021.117132. Disponível em: 

https://doi.org/10.1016/j.applthermaleng.2021.117132. 



42 

 

SAMAD, Abdus; NIZAMUDDIN, Mohammad. Flow Analyses Inside Jet Pumps Used for 

Oil Wells. International Journal of Fluid Machinery and Systems, [S. l.], v. 6, n. 1, p. 

1–10, 2013. DOI: 10.5293/IJFMS.2012.6.1.001. Disponível em: 

http://koreascience.or.kr/journal/view.jsp?kj=OCGKEU&py=2013&vnc=v6n1&sp=1. 

SILVA, Filipe Magalhães de Carvalho; APOLINARIO, Mayara da Fonseca; SIQUEIRA, 

Antonio Marcos De Oliveira; CANDIAN, André Luiz Moreira; MOREIRA, Livia Andrade 

Fontes; SARTI, Mateus Rodrigues. Experimento Didático De Reynolds E Conceitos 

Básicos Em Mecânica Dos Fluidos. The Journal of Engineering and Exact Sciences, 

[S. l.], v. 3, n. 3, p. 346–357, 2017. DOI: 10.18540/2446941603032017346. 

SKILLICORN, David. Singular Value Decomposition (SVD). In: Understanding Complex 

Datasets. [s.l.] : Chapman and Hall/CRC, 2007. p. 71–112. DOI: 

10.1201/9781584888338-8. Disponível em: 

https://www.taylorfrancis.com/books/9781584888338/chapters/10.1201/9781584888338-

8. 

VAN LEER, Bram; POWELL, Kenneth G. Introduction to Computational Fluid Dynamics. 

In: Encyclopedia of Aerospace Engineering. Chichester, UK: John Wiley & Sons, Ltd, 

2010. DOI: 10.1002/9780470686652.eae048. Disponível em: 

https://onlinelibrary.wiley.com/doi/10.1002/9780470686652.eae048. 

VERSTEEG, H. K.; MALALASEKERA, W. An Introduction to Computational Fluid 

Dynamics: The Finite Volume Method. [s.l.] : Pearson Education, 2007. v. 2 

 



43 

 

ANEXO A -  ARTIGO SÍNTESE 

Universidade de São Paulo 

Engenharia de Petróleo – Escola Politécnica 

Número USP: 10404207   Data: 26/11/2021 

Crescimento Transiente de Energia de Perturbações na Condição de Entrada em 

Escoamentos Internos 

Victória Bergamo Benedito Chukwurah 
Orientador: Prof. Dr. Rafael dos Santos Gioria. 

Artigo Sumário referente à disciplina PMI3349 – Trabalho de Conclusão de Curso II 
Este artigo foi preparado como requisito para completar o curso de Engenharia de Petróleo na Escola Politécnica da USP. Template versão 

2021v01. 

Resumo 

Fazendo o uso dos conceitos e aplicabilidade da modelagem computacional de dinâmica de 

fluidos e, fundamentando as análises e premissas nas três leis básicas da mecânica dos fluidos: 

conservação de massa, primeira lei da termodinâmica e segunda lei de Newton, o presente estudo 

demonstra uma metodologia que determina hipóteses em relação ao crescimento energético de 

perturbações em um escoamento interno de um ejetor. Tal metodologia é baseada comparação 

entre o campo base do ejetor e o campo base de um escoamento bidimensional com expansão 

geométrica do tipo degrau, o qual é utilizado como base do estudo de avaliação e análise das 

variações transitórias de medidas como velocidade do escoamento, a partir da introdução de 

perturbações senoidais de pulso rápido na condição de contorno da entrada.  

Palavras-chave: Ejetor, Crescimento energético, Escoamento.  

Abstract 

Using the concepts and applicability of computational fluid dynamics modeling, and taking as a 

basis the three fundamental laws of fluid mechanics: conservation of mass, the first 

thermodynamic law, and Newton's second law, this study demonstrates a methodology for 

hypothesizing the energetic growth of disturbances in an internal flow of an ejector. This 

methodology is based on a comparison between the base field of the ejector and the base field of a 

two-dimensional flow with geometric expansion of the step type, which serves as a basis for 

studying the evaluation and analysis of transient variations in measured values such as flow 
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velocity resulting from the introduction of fast pulse sinusoidal perturbations in the input 

boundary condition. 

Keywords: ejector, energy gain, flow. 

1. Introdução 

Baseada no comportamento de fluidos em diversos tipos de sistemas, a modelagem computacional 

da dinâmica de fluidos possui grande importância em setores industriais. Assim como afirmado 

por VAN LEER; POWELL (2010), há uma demanda por métodos de medição e maneiras de 

estabelecer, previamente às aplicações, uma confiabilidade de soluções e metodologias 

computacionais para as modelagens, principalmente para escoamentos com geometria complexa, 

como por exemplo um ejetor.  

Os ejetores (Figura 1), equipamentos para fluxo de fluidos com geometria de expansão, possuem 

diversas áreas de aplicação devido a possível implementação para mecanismos como sucção e 

mistura de fluidos, como em reatores químicos, dosadores, entre outros.  

 

Figura 1 – Esquema de componentes e geometria de um ejetor, adaptado de (EVANS, ©2021)  

De acordo com HUSAIN et al. (2016), o funcionamento dos ejetores se baseia no princípio do 

efeito de Venturi, sendo que com a injeção de um fluido primário em altas pressões tem-se como 

consequência um jato de alta velocidade fazendo com que uma zona de sucção seja criada, 

formando um gradiente de pressão no bocal de sucção, e com isso, a sucção de um fluido 

secundário. Posteriormente, na câmara de mistura ocorre a mistura dos dois fluidos, havendo 

transferência de energia e momento, e assim esta mistura segue para o difusor, local onde ocorre 

expansão do fluxo.  
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No entanto, embora possua uma ampla aplicabilidade em diversos segmentos da indústria, a 

modelagem matemática do escoamento interno do ejetor não é considerada trivial, necessitando a 

definição das equações de conservação de massa, energia e momento, o uso de equações de 

estado, além da definição de algumas premissas e hipóteses devidamente implementadas à 

simulação. Além disso, bem como comentado em HUSAIN et al. (2016), os ejetores não são 

equipamentos com altas performances de eficiência por diversos motivos, como a mistura 

inadequada de fluidos primários e secundários e também, devido fenômenos de transferência de 

energia e quantidade de movimento.  

Considerando o escoamento interno laminar de um fluido incompressível com geometria de 

bombeamento, do tipo ejetor, o atual estudo objetiva estimar características energéticas do fluxo 

interno deste escoamento. Com a determinação das perturbações ótimas que evoluem durante o 

fluxo de um escoamento de expansão do tipo degrau, provocando a alteração do regime do 

escoamento e gerando o maior crescimento energético transiente; e posteriormente, utilizando o 

espelhamento simétrico em torno do eixo horizontal do domínio espacial deste escoamento; será 

expressa uma possível correlação entre estes dois tipos de escoamento – o do degrau e do ejetor – 

em busca de estimar e elaborar hipóteses a respeito do mecanismo de evolução energética ótima 

do fluxo interno dos ejetores.  

2. Revisão Bibliográfica 

2.1. Ejetores 

As bombas à jato, ou ejetores, possuem diversas utilidades no setor industrial, no entanto, ARBEL 

et al. (2003) comentam que o princípio de funcionamento dos ejetores é geralmente o mesmo: o 

fluido primário injetado em alta pressão torna possível a sucção de um fluido secundário devido 

um gradiente de pressão no bocal de sucção; com isso, o fluido primário transfere parte de sua 

energia cinética ao fluido secundário, havendo a mistura dos fluidos; e, por fim, a mistura é 

ejetada após uma passar pela parte do difusor.  

Mais especificamente, na indústria de petróleo e gás, diversos estudos e aplicações de ejetores, ou 

bombas a jato, são realizados. Assim como explicado por SAMAD; NIZAMUDDIN (2013), os 

ejetores são utilizados para elevação artificial, quando a profundidade e o desvio dos poços de 

produção aumentam e há depleção da pressão. Em CHAGAS et al. (2016) é estudado o seu uso 

visando a descompressão do revestimento em poços maduros; já em DUARTE et al. (2018), o 

estudo sobre ejetor se deu com foco na aspiração de gases aprisionados no tubo anular, visando a 

manutenção da vazão do poço em questão. 
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2.2. Regimes e Estabilidade de Escoamento 

Osborne Reynolds categorizou regime do e escoamentos, os quais podem ser do tipo laminar 

quando não há mistura significativa entre partículas vizinhas do fluido durante o escoamento; 

turbulento, o qual ocorre quando os movimentos do fluido variam irregularmente; e, o regime de 

escoamento em transição, marcado pela transição do escoamento de laminar para turbulento um 

parâmetro adimensional (Equação 1) que pode ser utilizado como ferramenta para prever o regime 

do escoamento, consolidado pela combinação de três parâmetros físicos: espessura da camada 

limite (𝐿), velocidade de escala (𝑉) e a viscosidade cinemática (𝜐). Sendo que, para cada tipo de 

geometria de escoamento tem-se um número de Reynolds crítico, o qual determina que se 𝑅𝑒 <

𝑅𝑒𝑐𝑟𝑖𝑡𝑖𝑐𝑜, o escoamento permanece laminar. 

𝑅𝑒 =
𝑉𝐿

𝜐
 Equação 1 

  Normalmente a transição para a turbulência se inicia com uma instabilidade do estado 

laminar, podendo ser provocada por perturbações. Caso essas oscilações sejam crescentes, podem 

ser seguidas por uma alteração do regime para a turbulência ou, podem ser um gatilho para o 

início da transição do regime rumo à turbulência. Em um escoamento estável geralmente as 

oscilações continuam sempre com a mesma amplitude e, normalmente, decaem com um tempo 

por serem amortecidas por efeitos viscosos (KRISHNAN; DESHPANDE; KUMAR, 2010). Já 

quando as oscilações aumentam em amplitude perante o domínio do escoamento, seja o temporal, 

espacial ou ambos, o fluxo apresenta uma instabilidade. Por fim, tem-se que quando uma 

perturbação cresce apenas no domínio temporal, permanecendo fixa em relação ao espacial, a 

instabilidade é absoluta; caso a perturbação aumenta em magnitude perante o escoamento, se 

propagando à medida que cresce podendo decair a qualquer ponto do domínio, tem-se uma 

instabilidade convectiva (BLACKBURN; BARKLEY; SHERWIN, 2008), assim como 

demonstrado na Figura 2: 

 

Figura 26 - Demonstração da evolução de perturbações em escoamentos com instabilidade absoluta (a), instabilidade convectiva (b) e, 

escoamentos com geometria complexa onde há regiões de instabilidade convectiva local cercada por região de fluxo estável (c).  Adaptado 

de (BLACKBURN; BARKLEY; SHERWIN, 2008) 
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2.3. Equações Governantes do Escoamento 

Com o estudo do modelo de movimento do fluido partindo da definição da massa infinitesimal 

com base na massa específica (𝜌) e volume de controle 𝒱  (Equação 2) e, tendo como como 

princípio de que a massa é conservada, tem-se que a derivada da massa do fluido é nula (Equação 

3). Com isso, é possível combinar essas duas equações chegando na Equação 4, a qual representa 

a equação diferencial da continuidade do fluido, sendo 𝑼⃑⃑  o vetor velocidade (ANDERSON, 

1992): 

𝜕𝑚 = 𝜌𝜕𝒱 Equação 2 

𝐷(𝜕𝑚)

𝐷𝑡
= 0 Equação 3 

𝐷𝜌

𝐷𝑡
+ 𝜌∇. 𝑼⃑⃑ = 0 Equação 4 

Adicionando a hipótese de que neste estudo será feita a modelagem do escoamento de um fluido 

incompressível, ou seja, a massa específica de cada partícula do fluido é constante e, a equação da 

continuidade demostra que neste caso, o divergente do vetor velocidade é zero (POTTER; 

WIGGERT; RAMADAN, 2015): 

∇. 𝑼⃑⃑ = 0 Equação 5 

Também definindo o fluido em estudo como newtoniano, que possui uma relação de 

proporcionalidade entre a taxa de cisalhamento e o produto da taxa de deformação com a 

constante de viscosidade; isotrópico, cujas propriedades uma determinada posição independem da 

direção; e, homogêneo, tendo suas propriedades independentes da posição. É aplicada a segunda 

lei de Newton para tal fluido, é possível obter as equações diferenciais que descrevem o 

movimento deste fluido, conhecidas como equações de Navier-Stokes (MUNSON et al., 2009): 

𝜌
𝐷𝑼

𝐷𝑡
=  − 𝛻𝑝 − 𝜌(𝑼 ∙ 𝛻)𝑼 + 𝜇𝛻2𝑼 + 𝜌𝑔 Equação 6 

Sendo que 𝑝 representa a pressão estática; 𝑔 a gravidade; e, 𝜇 a viscosidade dinâmica do fluido. 

2.4. Estabilidade Linear e Crescimento Energético Transiente 

É necessário compreender as ocasiões em que o escoamento base é linearmente estável, mas, com 

a presença de regiões de instabilidade convectiva local, as perturbações apresentam um 

desenvolvimento transiente (BARKLEY; BLACKBURN; SHERWIN, 2007). Portanto, definindo 

as perturbações como pulsos rápidos de formas senoidais e sendo elas ortogonais entre si, as 
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perturbações serão incompressíveis assim como o escoamento base. Portanto, utilizando o 

conceito físico de energia cinética (Equação 7a) e considerando a evolução transiente das 

perturbações no domínio espacial Ω, é determinada uma norma 𝕃2 da energia cinética total, pela 

unidade mássica da perturbação (𝐸), associada a um produto interno (Equação 7b), afim de 

quantificar o tamanho das perturbações (ABDESSEMED et al., 2009).  

𝐾 =
𝑚∙ 𝑣2

2
  

Equação 7a 

2𝐸(𝑼′) =  (𝑼′, 𝑼′) ≡  ∫𝑼′ ∙ 𝑼′𝑑𝒱
Ω

 
Equação 7b 

Sendo 𝑼′ a evolução infinitesimal das perturbações e 𝒜(𝑡) um operador de evolução linear que 

desenvolve as perturbações no espaço temporal (Equação 8) definido pelas equações de Navier-

Stokes (Equação 6), teremos os resultados sobre a estabilidade linear do escoamento base 

(ABDESSEMED et al., 2009) em relação aos domínios espaciais e temporais do escoamento. É 

possível compreender tal dinâmica de estabilidade e crescimento transiente a partir do cálculo dos 

autovalores e auto vetores singulares de 𝒜. Com isso, estamos em busca dos maiores valores 

singulares de 𝒜(𝜏) e para isso será feita a decomposição de valores singulares de 𝒜(𝜏), sendo 𝑣 

os autovetores e 𝜎 os autovalores (BARKLEY; BLACKBURN; SHERWIN, 2007). 

𝑼′(𝑥, 𝑡) =  𝒜(𝑡)  ∙ 𝑼′(𝑥, 0) 
Equação 8 

𝒜(𝜏)𝑽𝑗  =  𝜎𝑗 𝑼𝒋  Equação 9a 

𝜎𝑗 = ‖𝑼′(𝜏)‖ 
Equação 9b 

2.5. Decomposição de Valores Singulares (SVD) 

Pela definição da Decomposição de Valores Singulares dada em SKILLICORN (2007), é possível 

decompor uma matriz 𝑨 ∈ ℝ𝑛×𝑑
 em três matrizes: 𝑨 = 𝑈𝐷𝑉𝑇 . Sendo assim, temos que as 

colunas de 𝑼 ∈ ℝn×r e 𝑽 ∈ ℝr×d são ortonormais e a matriz 𝑫 ∈ ℝ𝑟×𝑟 é diagonal com valores 

reais positivos. Explica também que 𝑨 possui 𝑟 autovalores positivos (𝜎𝑖 , … , 𝜎𝑟) correspondentes 

aos auto vetores. Sendo a matriz 𝑼, tendo em suas colunas os auto vetores direitos (𝑣1, … , 𝑣𝑟) da 

matriz 𝑨; a matriz 𝑽, sendo suas linhas os auto vetores esquerdos (𝑢1, … , 𝑢𝑟) da matriz 𝑨; e, 

define-se 𝑫 uma matriz quadrada diagonal de dimensões 𝑟 × 𝑟, onde os elementos de diagonal 

são chamados de valores singulares de 𝑨. Com isso, é possível obter 𝑨 a partir de: 
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𝑨 = ∑𝜎𝑗𝑢𝑗𝑣𝑗
𝑇

𝑟

𝑗=1

 Equação 10a 

𝑢𝑗 =
1

𝜎𝑗(𝑨)
𝑨𝑣𝑗, 𝑝𝑎𝑟𝑎 𝑗 = 1, 2,… , 𝑟   

Equação 10b 

Portanto, no decorrer do atual estudo, esta metodologia permitirá a reconstrução do perfil de 

velocidades do escoamento. Serão utilizados auto vetores direitos para a reconstrução deste perfil 

e também, serão encontradas as melhores combinações das perturbações, sendo estas as que geram 

maior crescimento energético do escoamento e, que são definidas a partir dos auto vetores 

esquerdos. 

3. Metodologia 

Ao realizar a modelagem de um escoamento bidimensional com expansão geométrica do tipo 

degrau (Figura 2), o atual estudo visa implementar perturbações de pulso rápido e caráter 

turbulento no início do escoamento em questão, a fim de entender o mecanismo de amplificação 

destas perturbações. E, com isso, serão feitas comparações à modelagem do escoamento base do 

ejetor, afim de analisar o mecanismo e características de escoamento de ejetores que tornam 

possível o maior crescimento energético transiente gerado por uma combinação ótima 

perturbações introduzidas na condição de contorno, então, é obtida uma hipótese acerca de uma 

modelagem de ejetores que possua uma mistura mais efetiva dos fluidos introduzidos.   

 

Figura 2 - Exemplo de domínio com geometria de expansão do tipo degrau que será modelado.  

BARKLEY; BLACKBURN; SHERWIN (2007) 

Aplicada para gerar soluções aproximadas de problemas de valores de contorno em modelagens 

até tridimensionais, será utilizado o método de elementos finitos a fim de encontrar soluções de 

Navier-Stokes para o escoamento em estudo. Com a solução que abrange o campo de velocidades 

e pressão (𝒖, 𝑝) do problema, são determinadas aproximações iniciais (𝑢ℎ, 𝑝ℎ) em uma dimensão 

espacial finita apropriada para a discretização das equações que governam o escoamento 

(MAHMUD; RHAMAN; AZAD, 2016). 
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3.1. Validação da Metodologia – Simulação do Degrau 

Iniciando a modelagem, é definido um volume de controle inicial com geometria do tipo expansão 

do tipo degrau (Figura 6) e, assim como em BARKLEY; BLACKBURN; SHERWIN (2007), são 

aplicadas as equações de Navier-Stokes (Equação 6) para fluidos incompressíveis com as 

equações governantes do movimento do fluido em um domínio Ω, utilizando também a relação do 

número de Reynolds (Equação 1). Sendo os campos de velocidade e pressão do escoamento base 

definidos respectivamente por 𝒖(𝑥, 𝑡) = (𝑢, 𝑣, 𝑤)(𝑥, 𝑦, 𝑧, 𝑡) e  𝑝(𝑥, 𝑡): 

𝜕𝒖

𝜕𝑡
=  −(𝒖 ⋅ 𝛻)𝒖 −  𝛻𝑝 − +

1

𝑅𝑒
𝛻2𝒖, 𝑒𝑚 𝛺 

Equação 

11a 

𝛻 ⋅ 𝒖 = 0, 𝑒𝑚 𝛺 
Equação 

11b 

Com o foco em compreender a evolução infinitesimal das perturbações 𝒖′ no escoamento base, as 

equações de Navier-Stokes serão implementadas a partir das relações 𝒖 + 𝒖′ e 𝑝 + 𝑝′, sendo 𝑝′ a 

pressão das perturbações (BARKLEY; BLACKBURN; SHERWIN, 2007):  

𝜕𝒖′

𝜕𝑡
=  −(𝒖 ⋅ 𝛻)𝒖′ − (𝒖′ ⋅ 𝛻)𝒖 −  𝛻𝑝′ − +

1

𝑅𝑒
𝛻2𝒖′, 𝑒𝑚 𝛺 

Equação 12a 

𝛻 ⋅ 𝒖′ = 0, em Ω Equação 

12b 

A partir da Equação 12a, tem-se os termos relacionados às respostas da propagação das 

perturbações no escoamento base, sendo: 𝑢′ ∙ ∇u: redistribuição de energia; 𝑢 ∙ ∇u′: convecção da 

perturbação   

1

𝑅𝑒
∙ ∇2u′: dissipação de energia. 

As perturbações aplicadas nas modelagens deste estudo são pulsos rápidos os quais possuem 

caráter senoidal, definidas por:  

𝑠𝑐𝑎𝑙𝑒 × 𝑠𝑒𝑛 (𝑐𝑜𝑢𝑛𝑡. 𝜋.
𝑦

ℎ
) × (1 − 𝑒𝑥𝑝(−𝜎(𝑡 − 𝜏)2). 𝑐𝑜𝑠 (𝜔𝑡) 

Equação 13 

 

Com 𝑠𝑐𝑎𝑙𝑒 = 1, 𝜎 = 1, 𝑡 = variável de tempo e 𝑦=altura da entrada. Sendo que a variável 

𝑐𝑜𝑢𝑛𝑡 utilizada no intervalo [0;  9]  diferencia as perturbações testadas, nomeadas por inlet, 

alterando os harmônicos e aumentando a frequência de oscilação da função, a fim de encontrar a 

perturbação de maior impacto, ou seja, a qual gera maior energia ao escoamento. 
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Serão realizadas simulações de 𝑐𝑜𝑢𝑛𝑡  perturbações por um intervalo de tempo 𝜏 e seus resultados 

serão armazenados em forma matricial (Equação 14). Com isso, cada coluna desta matriz 

representa o resultado de uma perturbação após 𝜏 segundos: 

𝑩[⋮][𝑖](𝜏) = 𝒖′(𝜏) 
Equação 14 

Para a resolução dessa matriz será feita com base em fatoração de matrizes utilizado a 

metodologia de Decomposição em Valores Singulares, assim como aplicado em BARKLEY; 

BLACKBURN; SHERWIN (2007), para a resolução de problemas matriciais de autovalores. Com 

isso, a matriz 𝑩 será decomposta em um produto de outras três matrizes (Equação 15), chegando 

em: 𝑈, com cada coluna igual ao resultado da velocidade para determinada perturbação ótima; 𝐷, 

matriz de autovalores que representam nível de energia de cada combinação ótima (ordem 

decrescente); e 𝑉 uma matriz em que as linhas representam os coeficientes da combinação linear 

das perturbações consideradas ótimas. 

𝑩 = 𝑈𝐷𝑉𝑇 
Equação 15 

3.2. Simulação do Ejetor 

Visando um maior entendimento do escoamento interno base em um ejetor, assim como sua 

dinâmica energética, são definidos os parâmetros do ejetor à ser simulado (Tabela 1). 

Tabela 1 – Definição dos parâmetros do ejetor para a simulação 

𝑫𝑷  2.0 Diâmetro entrada do fluido primário  

𝑫𝑩𝑨 0.02 Diâmetro  bocal de alimentação  

𝑳𝑩𝑨  3.0 Comprimento da seção de convergência do bocal  

𝑵𝑿𝑷 0.0  Recuo entre a saída do bocal e a entrada da câmara de mistura 

𝑫𝑺  5.0 Diâmetro entrada do fluido secundário  

 𝑳𝑺  4.0 Comprimento da seção de entrada do fluido secundário  

 𝒆𝒔𝒑       0.005 Espessura máxima das pareces do bocal 

 𝑫𝑪𝑴   1.0 Diâmetro da câmara de mistura  

 𝑳𝑪𝑴   10.0 Comprimento da câmara de mistura  

 𝑫𝑫   2.0 Diâmetro do difusor  

𝑳𝑫  40.0 Comprimento do  difusor 

São estabelecidas as seguintes hipóteses em relação ao escoamento interno do ejetor: a parede 

interna do ejetor é considerada com aderência perfeita, ou seja, a velocidade do fluido é zero nesta 
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condição de contorno; o escoamento interno do ejetor é estacionário e isotérmico; e, o fluido é 

considerado incompressível e newtoniano. Além disso, da mesma forma que foi realizada para a 

geometria de degrau, para a simulação do escoamento dos fluidos do ejetor é realizada a 

modelagem e simulação de um escoamento de expansão no software FreeFEM++ (HECHT, 2012) 

utilizando o método dos elementos finitos para a encontrar soluções aproximadas das equações de 

Navier-Stokes (Equação 6) em um domínio espacial Ω.  

4. Resultados e Discussão 

4.1. Simulação do Degrau 

Para a análise do escoamento base, foram realizadas simulações no software FreeFEM++ 

(HECHT, 2012), utilizado para solucionar equações diferenciais parciais. Com isso, simulando o 

mesmo escoamento com diferentes números de Reynolds (100 a 500) foram obtidos os seguintes 

perfis de velocidade (Figura 3), sendo que a demonstração visual do campo de velocidades foi 

feita com o uso do software VisIt (CHILDS et al., 2012). É possível observar uma influência do 

número de Reynolds no escoamento base pois com o aumento de seus valores, maior a região 

atingida por alterações de velocidades, com as zonas de recirculação cada vez mais adiante do 

escoamento. 

 

Figura 3 - Campos de magnitude de velocidade do escoamento base para diferentes números de Reynolds. 

Com base em POTTER; WIGGERT; RAMADAN (2015), estas zonas de recirculação são os 

locais onde houve a separação da camada limite devido um encontro de correntes. Sendo assim, 
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esta região é de grande importância para a atual análise pois POTTER; WIGGERT; RAMADAN 

(2015) ainda afirmam que para um número de Reynolds suficiente, a camada limite antes liminar, 

pode sofrer transição para uma camada limite turbulenta logo a diante do ponto de estagnação.  

É feita uma relação entre a vorticidade e os pontos de separação do escoamento; sendo que os 

valores da vorticidade da parede superior do domínio da malha (𝑣𝑜𝑟𝑡𝑢) e dos vórtices da parede 

inferior (𝑣𝑜𝑟𝑡𝑑) obtidos na simulação para cada Reynolds (Figura 10 4) foram utilizados para 

encontrar os intervalos espaciais que poderiam conter estes pontos de separação. 

 

Figura 4 - Resultados da distribuição da vorticidade pelo domínio 

 da malha variando o número de Reynolds. 

Em busca de obter os locais geométricos dos pontos de separação para cada número de Reynolds 

por meio de uma aproximação linear, foram feitas interpolações entre os valores obtidos da 

vorticidade  (𝜔)  com sucessivos cálculos do produto entre os valores de vórtices de pontos 

consecutivos a fim de encontrar os intervalos e os intervalos onde a condição 𝜔(𝑥𝑖). 𝜔(𝑥𝑖+1) <

0 fosse garantida. Sendo 𝑥𝑒  ∈  ℝ ∶  𝑥𝑖 ≤ 𝑥𝑒 ≤  𝑥𝑖+1 o local geométrico do ponto de estagnação 

e 𝜔𝑒 = 0 sua vorticidade:  

𝑥𝑒  = 𝑥𝑖 − (
𝜔𝑖

𝜔𝑖+1   − 𝜔𝑖

) (𝑥𝑖+1 − 𝑥𝑖)  Equação 16 

Ao comparar a relação obtida no atual estudo (Figura 5) com os valores explicitados por 

BLACKBURN; BARKLEY; SHERWIN (2008), temos uma ótima confirmação acerca da 

assertividade do método empregado. Valida-se que com o aumento do Reynolds há a geração de 

um novo campo de recirculação em relação ao vórtice superior, o que está de acordo com a 

referência bibliográfica, a qual afirma que a partir de um 𝑅𝑒 ≅ 275 este novo campo é realmente 

esperado.. 
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Figura 5 - Relação entre pontos de estagnação encontrados de acordo com  o número de Reynolds utilizado na simulação 

 

4.2. Análise da Variação Energética devido Perturbações 

Com a análise da energia cinética da entrada do escoamento base modelado com um período de 

tempo τ=100 (Figura 6), percebe-se a existência de uma primeira região que possui picos 

energéticos logo no início do período (entre 2,25s e 3,5s), porém, estes picos não apresentam 

condições realmente favoráveis para a amplificação das perturbações pelo escoamento.A evolução 

energética com possíveis condições para ativar mecanismos de transição do escoamento se 

apresenta a partir de um 𝑅𝑒 = 300, sendo que com o aumento do número de Reynolds, tem-se 

aumento do pico de energia cinética. 

 

Figura 5 - Evolução temporal da energia cinética na condição de entrada do escoamento para cada número de Reynolds simulado.  (Na 

legenda, cada inlet (I) é acompanhado pelo seu respectivo valor para a variável count – Eq.13) 

A partir da decomposição SVD, são obtidas as matrizes: 𝑈,𝐷 𝑒 𝑉, tornando possível o acesso aos 

valores de velocidade, nível de energia ordenado de forma crescente e coeficientes da combinação 

linear das perturbações ótimas. Sendo assim, é obtida a combinação de perturbações que mais 
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impacta energeticamente escoamento base a partir da reconstrução do perfil de velocidades 

(Figura 6) utilizando a seguinte equação: 

𝑉𝑜𝑡𝑖𝑚𝑎 =  ∑ ( 𝐷 [𝑐𝑜𝑢𝑛𝑡]  ×  𝑠𝑒𝑛 (
𝑐𝑜𝑢𝑛𝑡 × 𝜋

𝑐𝑜𝑢𝑛𝑡 ×  𝑦
 ))

9

𝑐𝑜𝑢𝑛𝑡=0
 , 𝑦 𝜀 [0, ℎ] Equação 17 

Para os instantes de 25s e 60s foram observados consideráveis gradientes de velocidade, 

principalmente para os escoamentos simulados com 𝑅𝑒 ≥ 300 , o que está de acordo com a 

verificação da formação de zonas de recirculação. 

 

Figura 6 - Perfil de Velocidades para Reynolds 100 e 500 no instante 𝝉=25s 

4.3. Simulação do Ejetor 

Em busca de estabelecer hipóteses sobre as condições do escoamento do ejetor que se tornam os 

potenciais amplificadores de perturbações, a modelagem do escoamento base do ejetor tornou 

possível uma visualização dos campos de velocidade para alguns números de Reynolds (Figura 7 e 

Figura 8), sendo possível observar que quanto maior o número de Reynolds utilizado na 

simulação, maior a região de alta velocidade estabelecida no escoamento. 

 

Figura 7 - Campos de magnitude de velocidade do escoamento base do ejetor (Reynolds = 100. 
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Figura 8 - Campos de magnitude de velocidade do escoamento base do ejetor (Reynolds = 500) 

5. Conclusão 

Inicialmente, o estudo estava em busca de validar uma metodologia para a modelagem de um 

escoamento de expansão do tipo degrau, para em um segundo momento poder introduzir as 

perturbações de pulso rápido e forma senoidal na condição de entrada do escoamento base afim de 

verificar os mecanismos de evolução energética do mesmo.  

Portanto, durante os estudos em função do escoamento com degrau, foi observado que com o 

aumento do número de Reynolds empregado na simulação, há o aparecimento de um novo campo 

de recirculação em relação ao vórtice superior a partir de um número de Reynolds≥300, condição 

esta que favorece a transição da camada limite antes laminar para turbulenta. Além disto, com a 

análise temporal da evolução energética do escoamento após a introdução das perturbações no 

escoamento base, mais uma vez foi observado que utilizando um número de Reynolds maior que 

300, tem-se um expressivo aumento energético do escoamento. Ademais, ao observar os perfis de 

velocidade reconstruídos que possuem maior gradiente de velocidade, e consequentemente geram 

maior redistribuição de energia, foi possível definir as hipóteses iniciais em relação à evolução 

energética do ejetor.  

Tendo conhecimento da dificuldade da modelagem matemática do escoamento interno dos 

ejetores e, em busca de uma contribuição para a resolução da problemática em relação à condição 

de eficiência dos ejetores, estas hipóteses, as quais giram em torno do entendimento do 

mecanismo mais propício para a amplificação de perturbações no ejetor, consideram que nas 

regiões do escoamento onde foram observados fenômenos físicos como a formação de bolhas no 

degrau apresentam um maior potencial de amplificação energético.  

Portanto, conclui-se que considerando um enfoque no crescimento transiente ótimo da energia do 

escoamento base do ejetor, a partir do espelhamento simétrico em torno do eixo horizontal do 
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domínio espacial do escoamento com expansão do tipo degrau, as condições que possivelmente 

funcionam como potenciais amplificadores das perturbações inseridas na condição de entrada do 

escoamento estão relacionadas à uma maior quantidade de zonas de recirculação, além de 

necessitarem um gradiente de velocidade expressivo o bastante para conseguir redistribuir a 

energia de forma mais efetiva e que faça com que haja condições do estabelecimento de um 

regime mais energético do que o inicial. 

5.1. Contribuições do Trabalho  

Levando em consideração a necessidade de uma maior confiabilidade nos modelos de 

simulação dos ejetores, além de ter como objetivo a colaboração com a comunidade científica em 

relação ao conhecimento sobre o mecanismo energético dos ejetores, o presente estudo demonstra 

um exemplo de caminho a ser seguido em estudos que busquem uma validação de simulações em 

relação à bibliografia. São também apresentadas hipóteses acerca da amplificação de perturbações 

no ejetor, equipamento o qual não possui uma modelagem matemática trivial. Além disso, é 

exposto um percurso de avaliação dos ejetores em função do espelhamento do escoamento do tipo 

degrau, o que pode servir de sugestão para estudos que possuem modelagens complexas e que 

possam seguir o caminho de análise por semelhança.  

5.2. Trabalhos futuros 

Como prosseguimento da avaliação do mecanismo energético dos ejetores, entende-se que 

uma avaliação na mesmo direcionamento da análise feita para o escoamento do degrau seja de 

grande contribuição. Portanto, com a modelagem do campo base do ejetor com perturbações 

inseridas em sua condição inicial, seria possível observar a evolução temporal da energia no 

escoamento, além de permitir verificar as hipóteses levantadas no presente estudo. Sendo ainda 

possível a definição do formato de perturbações ótimas para o ejetor, ou seja, aquelas que 

ocasionam uma transitoriedade energética do escoamento, podendo até ser definido um algoritmo 

para a definição das mesmas em função da estrutura geométrica do ejetor em estudo.  
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